Literaturhinweise aus „Fichten und Buchen bei Trockenheit im Rein- und Mischbestand“ von Hans Pretzsch, Florian Motte, Thorsten E. E. Grams, Karin Pritsch, Thomas Rötzer, Benjamin D. Hesse und Karl-Heinz Häberle (AFZ-DerWald 20/2021):
[1] Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., Huxman, T. E. (2009): Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the national academy of sciences, 106(17), 7063-7066.
[2] Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Gonzalez, P. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest ecology and management, 259(4), 660-684.
[3] Ammer, C. (2019): Diversity and forest productivity in a changing climate. New Phytologist, 221(1), 50-66.
[4] Ammer, C. (2016): Unraveling the importance of inter-and intraspecific competition for the adaptation of forests to climate change. In Progress in Botany Vol. 78 (pp. 345-367). Springer, Cham.
[5] Benito‐Garzón, M., Ha‐Duong, M., Frascaria‐Lacoste, N., Fernández‐Manjarrés, J. (2013): Habitat restoration and climate change: dealing with climate variability, incomplete data, and management decisions with tree translocations. Restoration Ecology, 21(5), 530-536.
[6] Biber, P., Borges, J. G., Moshammer, R., Barreiro, S., Botequim, B., Brodrechtova, Y., … Eriksson, L. O. (2015): How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests, 6(5), 1666-1695.
[7] Bréda, N., Huc, R., Granier, A., Dreyer, E. (2006): Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63(6), 625-644.
[8] Brunner, I., Herzog, C., Dawes, M. A., Arend, M., Sperisen, C. (2015): How tree roots respond to drought. Frontiers in plant science, 6, 547.
[10] Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G. J., Schall, P., … Rock, J. (2009): Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24(6), 473-482.
[11] Charru, M., Seynave, I., Hervé, J. C., Bertrand, R., Bontemps, J. D. (2017): Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats. Annals of Forest Science, 74(2), 33.
[12] Ding, H., Pretzsch, H., Schütze, G., Rötzer, T. (2017): Size‐dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed‐species stands. Plant Biology, 19(5), 709-719.
[13] Dieler, J., Uhl, E., Biber, P., Müller, J., Rötzer, T., Pretzsch, H. (2017): Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. European Journal of Forest Research, 136(4), 739-766.
[14] Gebhardt, T., Häberle, K.H., Matyssek, R., Schulz, C., Ammer, C. (2014): The more, the better? Water relations of Norway spruce stands after progressive thinning. Agricultural and Forest Meteorology 197, 235-243.
[15] Grams, T.E.E., Hesse, B.D., Gebhardt, T., Weikl, F., Rötzer, T., Kovacs, B., Hikino, K., Hafner, B.D., Brunn, M., Bauerle, T., Häberle, K-H., Pretzsch, H., Pritsch, K. (2020): The Kroof experiment – realization and efficacy of a recurrent drought experiment plus recovery in a beech/spruce forest. Ecosphere: in press.
[16] Jorge, I., Navarro, R. M., Lenz, C., Ariza, D., Jorrín, J. (2006): Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Proteomics, 6(S1), S207-S214.
[17] Kunz, J., Löffler, G., Bauhus, J. (2018): Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. Forest Ecology and Management, 414, 15-27.
[18] Lässig, R. (2020): Pine trees have an ecological memory, News WSL, Swiss Federal Institute for Forest, Snow and Landscape Research WSL https://www.wsl.ch/en/2020/07/pine-trees-have-an-ecological-memory.html
[19] Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., … Lexer, M. J. (2010): Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest ecology and management, 259(4), 698-709.
[20] Lloret, F., Keeling, E. G., Sala, A. (2011): Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests. Oikos, 120(12), 1909-1920.
[21] Merlin, M., Perot, T., Perret, S., Korboulewsky, N., Vallet, P. (2015): Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management, 339, 22-33.
[22] Pretzsch, H., Schütze, G., Uhl, E. (2013): Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter‐specific facilitation. Plant Biology, 15(3), 483-495.
[23] Pretzsch, H., Grams, T., Häberle, K. H., Pritsch, K., Bauerle, T., Rötzer, T. (2020): Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees, 34: 957–970.
[24] Pretzsch, H., del Río, M., Biber, P., Arcangeli, C., Bielak, K., Brang, P., … Ledermann, T. (2019): Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives. European Journal of Forest Research, 138(1), 165-185.
[25] Pretzsch, H., Rötzer, T., Matyssek, R., Grams, T. E. E., Häberle, K. H., Pritsch, K., … Munch, J. C. (2014): Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees, 28(5), 1305-1321.
[26] Pretzsch, H., Schütze, G., Biber, P. (2018): Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. Forest Ecosystems, 5(1), 20.
[27] Pretzsch, H., Schütze, G., Uhl, E. (2013): Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter‐specific facilitation. Plant Biology, 15(3), 483-495.
[28] Rahmstorf, S., Schellnhuber, Hans J. (2007): Der Klimawandel. Diagnose, Prognose, Therapie. Beck, München 2007, S. 88.
[29] Rötzer, T., Häberle, K.H., Kallenbach, C., Matyssek, R., Pretzsch, H. (2017): Tree species and size drive water consumption of beech/spruce forests (Fagus sylvatica/Picea abies) – a simulation study highlighting growth under water limitation. Plant and Soil, 418(1), 337-356.
[30] Rose, L., Leuschner, C., Köckemann, B., Buschmann, H. (2009): Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? European Journal of Forest Research, 128(4), 335-343.
[31] Rukh, S., Poschenrieder, W., Heym, M., Pretzsch, H. (2020): Drought Resistance of Norway Spruce (Picea abies [L.] Karst) and European Beech (Fagus sylvatica [L.]) in Mixed vs. Monospecific Stands and on Dry vs. Wet Sites. From Evidence at the Tree Level to Relevance at the Stand Level. Forests, 11(6), 639.
[32] Schwarz, J., Skiadaresis, G., Kohler, M., Kunz, J., Schnabel, F., Vitali, V., Bauhus, J. (2020): Quantifying Growth Responses of Trees to Drought—a Critique of Commonly Used Resilience Indices and Recommendations for Future Studies, Current Forestry Reports, https://doi.org/10.1007/s40725-020-00119-2.
[33] Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T.E.E., Hauck, M., Hajek, P., Hartmann, H., Hilbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D.B., Rammig, A., Rigling, A., Rose, L., Ruehr, N.K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C.S., Kahmen, A. (2020): A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and applied ecology 45, 86-103.
[34] Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., … Reichstein, M. (2012): Changes in climate extremes and their impacts on the natural physical environment, Cambridge University Press.
[35] Sohn, J. A., Saha, S., Bauhus, J. (2016): Potential of forest thinning to mitigate drought stress: A meta-analysis. Forest Ecology and Management, 380, 261-273.
[36] Steckel, M., Moser, W. K., del Río, M., Pretzsch, H. (2020): Implications of Reduced Stand Density on Tree Growth and Drought Susceptibility: A Study of Three Species under Varying Climate. Forests, 11(6), 627.
[37] Spiecker, H., Mielikäinen, K., Köhl, M., Skovsgaard, J. P. (Eds.). (2012): Growth trends in European forests: studies from 12 countries. Springer Science & Business Media.
[38] Taeger, S., Zang, C., Liesebach, M., Schneck, V., Menzel, A. (2013): Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. Forest Ecology and Management, 307, 30-42.
[39] Thurm, E. A., Uhl, E., Pretzsch, H. (2016): Mixture reduces climate sensitivity of Douglas-fir stem growth. Forest Ecology and Management, 376, 205-220.
[40] Zang, C., Pretzsch, H., Rothe, A. (2012): Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees, 26(2), 557-569.
[41] Göttlein, A., Baumgarten, M., Dieler, J. (2012): Site Conditions and Tree-Internal Nutrient Partitioning in Mature European Beech and Norway Spruce at the Kranzberger Forst. In Growth and Defence in Plants. R. Matyssek, H. Schnyder, W. Oßwald, D. Ernst, J.C. Munch, H. Pretzsch (eds). Springer Berlin Heidelberg, pp. 193–211.