Pretzsch et al. (AFZ-DerWald 8/2019)

17. April 2019

Literaturhinweise aus „Bäume im Klimawandel: Schneller groß mit leichterem Holz“ von Hans Pretzsch, Peter Biber, Gerhard Schütze, Enno Uhl und Julia Kemmerer (AFZ-DerWald 8/2019):

[1] Bouriaud, O., Leban, J.-M., Bert, D., Deleuze, C., 2005. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol. 25, 651-660.

[2] Cucchi, V., Meredieu, C., Stokes, A., de Coligny, F., Suarez, J., Gardiner, B.A., 2005. Modelling the windthrow risk for simulated forest stands of Maritime pine (Pinus pinaster Ait.). For. Ecol. Manag. 213, 184-196.

[3] Churkina, G., Zaehle, S., Hughes, J., Viovy, N., Chen, Y., Jung, M., Heumann, B.W., Ramankutty, N., Heimann, M., Jones, C., 2010. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences 7, 2749-2764.

[4] Dunham, R.A., Cameron, A.D., 2000. Crown, stem and wood properties of wind-damaged and undamaged Sitka spruce. For. Ecol. Manag. 135, 73-81.

[5] Evans, R., Ilic, J., 2001. Rapid prediction of wood stiffness from microfibril angle and density. For. Prod. J. 51, 53.

[6] Franceschini, T., Bontemps, J.-D., Gelhaye, P., Rittie, D., Herve, J.-C., Gegout, J.-C., Leban, J.-M., 2010. Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Ann. For. Sci. 67, 816.

[7] Franceschini, T., Bontemps, J.-D., Leban, J.-M., 2012. Transient historical decrease in earlywood and latewood density and unstable sensitivity to summer temperature for Norway spruce in northeastern France. Can. J. For. Res. 42, 219-226.

[8] Gardiner, B.A., Stacey, G.R., Belcher, R.E., Wood, C.J., 1997. Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. For. Int. J. For. Res. 70, 233-252.

[9] Hoffmeyer, P., Pedersen, J.G., 1995. Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy. Holz Als Roh- Werkst. 53, 165-170.

[10] IPCC (2007) Fourth Assessment Report: Climate Change 2007. Working Group I Report. The Physical Science Basis, Geneva, Switzerland, 104 S.

[11] Jacoby, G.C., D’Arrigo, R.D., 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Glob. Biogeochem. Cycles 9, 227-234.

[12] Jüttner O (1955) Eichenertragstafeln. In: Schober R (ed) (1971) Ertragstafeln der wichtigsten Baumarten. JD Sauerländer’s Verlag, Frankfurt am Main, pp 12-25, 134-138.

[13] Kenk G, Spiecker H, Diener G (1991) Referenzdaten zum Waldwachstum. Kernforschungszentrum Karlsruhe, KfK-PEF 82, 59 S.

[14] Lachenbruch, B., Johnson, G.R., Downes, G.M., Evans, R., 2010. Relationships of density, microfibril angle, and sound velocity with stiffness and strength in mature wood of Douglas-fir. Can. J. For. Res. 40, 55-64.

[15] Meyer, F.D., Paulsen, J., Körner, C., 2008. Windthrow damage in Picea abies is associated with physical and chemical stem wood properties. Trees 22, 463.

[16] Peltola, H., Kellomäki, S., Väisänen, H., Ikonen, V.-P., 1999. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 29, 647-661.

[17] Pretzsch, H., 2016. Ertragstafel-Korrekturfaktoren für Umwelt- und Mischungseffekte. AFZ- Wald 187, 47-50.

[18] Pretzsch, H., Rais, A., 2016. Wood quality in complex forests versus even-aged monocultures: review and perspectives. Wood Sci. Technol. 50, 845-880.

[19] Pretzsch, H., Biber, P., Schütze, G., Bielak, K., 2014a. Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. For. Ecol. Manag., Forest Observational Studies: “Data Sources for Analysing Forest Structure and Dynamics” 316, 65–77.

[20] Pretzsch, H., Biber, P., Schütze, G., Uhl, E., Rötzer, T., 2014b. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5.

[21] Pretzsch, H., Biber, P., Uhl, E., Dahlhausen, J., Schütze, G., Perkins, D., Rötzer, T., Caldentey, J., Koike, T., van Con, T., Chavanne, A., du Toit, B., Foster, K., Lefer, B. (2017): Climate change accelerates growth of urban trees in metropolises worldwide. Scientific Reports 7: S. 10 DOI:10.1038/s41598-017-14831-w.

[22] Pretzsch H, Biber P, Schütze G, Kemmerer J, Uhl E (2018a) Wood Density Reduced While Wood Volume Growth Accelerated in Central European Forests Since 1870, Forest Ecology and Management, 429: 589-616.

[23] Pretzsch H, del Río M, Biber P et al. (2018b) Maintenance of long-term experiments for unique insights into forest growth dynamics and trends. Review and perspectives. European Journal of Forest Research. In Begutachtung.

[24] Putz, F.E., Coley, P.D., Lu, K., Montalvo, A., Aiello, A., 1983. Uprooting and snapping of trees: structural determinants and ecological consequences. Can. J. For. Res. 13, 1011-1020.

[25] Schelhaas, M.-J., Nabuurs, G.-J., Schuck, A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 9, 1620-1633.

[26] Spiecker, H., Hansen, N., Schinker, M.G., 2003. High-Frequency Densitometry-A New Method for the Rapid Evaluation of Wood Density Variations. IAWA J. 24, 231-239.

[27] Thomas, S.C., Malczewski, G., 2007. Wood carbon content of tree species in Eastern China: Interspecific variability and the importance of the volatile fraction. J. Environ. Manage., Carbon Sequestration In China’s Forest Ecosystems 85, 659-662.

[28] Wiedemann E (1932) Die Rotbuche 1931. Mitt Forstwirtsch u Forstwiss 3 (1), 189 p.

[29] Wiedemann E (1936/42) Die Fichte 1936. Verlag M & H Schaper, Hannover, 248 p.

[30] Wiedemann E (1943/48) Kiefern-Ertragstafel für mäßige Durchforstung, starke Durchforstung und Lichtung, In: Wiedemann E (1948) Die Kiefer 1948. Verlag M & H Schaper, Hannover, 337 p.