[1] ÁLVAREZ, I., WENDEL, J.F. (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, Vol. 29, Nr. 3, S. 417-434.
[2] Artenbericht (2010): Tiere, Pflanzen und Pilze im Nationalpark Hainich. Nationalparkverwaltung. Hainich. 148 S.
[3] BUSE, J., HOENSELAAR, G., LANGENBACH, F., SCHLEICHER, P., TWIETMEYER, S., POPA, F., HEURICH, M. (2021): Dung beetle richness is positively affected by the density of wild ungulate populations in forests. Biodiversity and Conservation, Vol. 30, S. 3115-3131.
[4] CHEN, S., YAO, H., HAN, J., LIU, C., SONG, J., SHI, L., ZHU, Y., MA, X., GAO, T., PANG, X., LUO, K., LI, Y., LI, X., JIA, X., LIN, Y., LEON, C. (2010): Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS one, Vol. 5, Nr.1, e8631
[5] CZERNIK, M., TABERLET, P., SWISŁOCKA, M., CZAJKOWSKA, M., DUDA, N., RATKIEWICZ, M. (2013): Fast and efficient DNA-based method for winter diet analysis from stools of three cervids: moose, red deer, and roe deer. Acta Theriologica, Vol 58, Nr. 4, S. 379-386.
[6] DZIECIOLOWSKI, R. (1970): Foods of the red deer as determined by rumen content analyses. Acta Theriologica, Vol. 15, Nr. 6, S. 89-110.
[7] GEBERT, C., VERHEYDEN-TIXIER, H. (2001): Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal Review, Vol. 31, Nr. 3, S. 189-201.
[8] GROOT BRUINDERINK, G.W.T.A., HAZEBROEK, E. (1995): Ingestion and diet composition of red deer (Cervus elaphus L.) in the Netherlands from 1954 till 1992, Mammalia, Vol. 59, Nr. 2, S. 187-196.
[9] HAUSMANN, A., SEGERER, A. H., GREIFENSTEIN, T., KNUBBEN, J., MORINIÈRE, J., BOZICEVIC, V., DOCZKAL, D., GÜNTER, A., ULRICH, W., HABEL, J. C. (2020): Toward a standardized quantitative and qualitative insect monitoring scheme. Ecology and evolution, Vol. 10, Nr. 9, S. 4009-4020.
[10] KOHN, M.H, WAYNE, R.K. (1997): Facts from feces revisited. Trends in Ecology & Evolution, Vol.12, Nr. 6, S. 223-227.
[11] MARTIN, M. (2011): Cut adapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, Vol. 17, Nr. 1, S. 10-12.
[12] MORINIÈRE, J., CANCIAN DE ARAUJO, B., LAM, A. W., HAUSMANN, A., BALKE, M., SCHMIDT, S., HENDRICH, L., DOCZKAL, D., FARTMANN, B., ARVIDSSON, S., HASZPRUNAR, G. (2016): Species identification in malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PloS one, Vol. 11, Nr. 5, e0155497.
[13] NATIONALPARKVERWALTUNG BAYERISCHER WALD (2011): Biologische Vielfalt im Nationalpark Bayerischer Wald. Sonderband der Wissenschaftlichen Schriftenreihe des Nationalparks Bayerischer Wald, Grafenau, 226 S.
[14] NCBI Resource Coordinators „Database resources of the National Center for Biotechnology Information“, 2013.
[15] PARDEY, A., TWIETMEYER S. (2018): Artenvielfalt im Nationalpark Eifel. Natur in NRW, Vol. 3, S. 2-6.
[16] PUTMAN, R. J. (1984): Facts from faeces. Mammal Review, Vol. 14, Nr. 2, S. 79-97.
[17] ROGNES, T., FLOURI, T., NICHOLS, B., QUINCE, C., MAHÉ, F. (2016): VSEARCH: a versatile open source tool for metagenomics. PeerJ, Vol. 4, e2584.
[18] STAINES, B. W., J. M. CRISP, PARISH, T. (1982): Differences in the Quality of Food Eaten by Red Deer (Cervus elaphus) Stags and Hinds in Winter. Journal of Applied Ecology, Vol. 19, Nr. 1, S. 65-77.
[19] STORMS, D., AUBRY, P., HAMANN, J.-L., SAÏD, S., FRITZ, H., SAINT-ANDRIEUX, S., KLEINET, F. (2008): Seasonal variation in diet composition and similarity of sympatric red deer Cervus elaphus and roe deer Capreolus capreolus. Wildlife Biology, Vol. 14, Nr. 2, S. 237-250.
[20] SUTER, W., SUTER, U., KRIISI, B., SCHÜTZ, M. (2004): Spatial variation of summer diet of red deer Cervus elaphus in the eastern Swiss Alps. Wildlife Biology, Vol. 10, Nr. 1, S. 43-50.