Literaturhinweise aus „Blick unter die Rinde entschlüsselt Wuchsüberlegenheit der Douglasie“ von Tobias Walter Miller, Dominik Florian Stangler, Harald Honer, Elena Larysch, Aikio Thore Erhardt, Heike Puhlmann, Thomas Seifert und Hans-Peter Kahle (AFZ-DerWald 19/2022):
[1] BALDUCCI, L.; CUNY, H. E.; RATHGEBER, C. B. K.; DESLAURIERS, A.; GIOVANNELLI, A.; ROSSI, S. (2016): Compensatory mechanisms mitigate the effect of warming and drought on wood formation. In: Plant, Cell and Environment, Jg. 39, H. 6, S. 1338–1352.
[2] CUNY, H. E.; RATHGEBER, C. B. K.; FRANK, D.; FONTI, P.; FOURNIER, M. (2014): Kinetics of tracheid development explain conifer tree-ring structure. In: The New Phytologist, Jg. 203, H. 4, S. 1231–1241.
[3] CUNY, H. E.; RATHGEBER, C. B. K.; FRANK, D.; FONTI, P.; MÄKINEN, H.; PRISLAN, P.; ROSSI, S.; DEL CASTILLO, E. M.; CAMPELO, F.; VAVRČÍK, H.; CAMARERO, J. J.; BRYUKHANOVA, M. V.; JYSKE, T.; GRIČAR, J.; GRYC, V.; LUIS, M. de; VIEIRA, J.; ČUFAR, K.; KIRDYANOV, A. V.; OBERHUBER, W.; TREML, V.; HUANG, J.-G.; LI, X.; SWIDRAK, I.; DESLAURIERS, A.; LIANG, E.; NÖJD, P.; GRUBER, A.; NABAIS, C.; MORIN, H.; KRAUSE, C.; KING, G.; FOURNIER, M. (2015): Woody biomass production lags stem-girth increase by over one month in coniferous forests. In: Nature plants, Jg. 1, S. 15160.
[4] DELPIERRE, N.; LIREUX, S.; HARTIG, F.; CAMARERO, J. J.; CHEAIB, A.; ČUFAR, K.; CUNY, H.; DESLAURIERS, A.; FONTI, P.; GRIČAR, J.; HUANG, J.-G.; KRAUSE, C.; LIU, G.; LUIS, M. de; MÄKINEN, H.; DEL CASTILLO, E. M.; MORIN, H.; NÖJD, P.; OBERHUBER, W.; PRISLAN, P.; ROSSI, S.; SADERI, S. M.; TREML, V.; VAVRICK, H.; RATHGEBER, C. B. K. (2019): Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. In: Global Change Biology, Jg. 25, H. 3, S. 1089–1105.
[5] ETZOLD, S.; STERCK, F.; BOSE, A. K.; BRAUN, S.; BUCHMANN, N.; EUGSTER, W.; GESSLER, A.; KAHMEN, A.; PETERS, R. L.; VITASSE, Y.; WALTHERT, L.; ZIEMIŃSKA, K.; ZWEIFEL, R. (2021): Number of growth days and not length of the growth period determines radial stem growth of temperate trees. In: Ecology letters, S. 1–13.
[6] GRIČAR, J.; PRISLAN, P.; GRYC, V.; VAVRČÍK, H.; LUIS, M. de; CUFAR, K. (2014): Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. In: Tree Physiology, Jg. 34, H. 8, S. 869–881.
[7] MÄKINEN, H.; SEO, J.-W.; NÖJD, P.; SCHMITT, U.; JALKANEN, R. (2008): Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. In: European Journal of Forest Research, Jg. 127, H. 3, S. 235–245.
[8] RATHGEBER, C. B. K.; CUNY, H. E.; FONTI, P. (2016): Biological basis of tree-ring formation: a crash course. In: Frontiers in Plant Science, Jg. 7, S. 734.
[9] RATHGEBER, C. B. K.; ROSSI, S.; BONTEMPS, J.-D. (2011): Cambial activity related to tree size in a mature silver-fir plantation. In: Annals of Botany, Jg. 108, H. 3, S. 429–438.
[10] ROSSI, S.; ANFODILLO, T.; MENARDI, R. (2006): Trephor: a new tool for sampling microcores from tree stems. In: IAWA Journal, Jg. 27, H. 1, S. 89–97.
[11] ROSSI, S.; DESLAURIERS, A.; ANFODILLO, T.; CARRARO, V. (2007): Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. In: Oecologia, Jg. 152, H. 1, S. 1–12.
[12] ROSSI, S.; DESLAURIERS, A.; GRIÇAR, J.; SEO, J.-W.; RATHGEBER, C. B. K.; ANFODILLO, T.; MORIN, H.; LEVANIC, T.; OVEN, P.; JALKANEN, R. (2008): Critical temperatures for xylogenesis in conifers of cold climates. In: Global Ecology and Biogeography, Jg. 17, H. 6, S. 696–707.
[13] SPIECKER, H.; LINDNER, M.; SCHULER, J. K. (Hrsg.) (2019): Douglas-fir. An option for Europe. Joensuu: European Forest Institute.
[14] STANGLER, D. F.; KAHLE, H.-P.; RADEN, M.; LARYSCH, E.; SEIFERT, T.; SPIECKER, H. (2021): Effects of Intra-Seasonal Drought on Kinetics of Tracheid Differentiation and Seasonal Growth Dynamics of Norway Spruce along an Elevational Gradient. In: Forests, Jg. 12, H. 3, S. 274.
[15] STEPPE, K.; STERCK, F.; DESLAURIERS, A. (2015): Diel growth dynamics in tree stems: linking anatomy and ecophysiology. In: Trends in plant science, Jg. 20, H. 6, S. 335–343.
[16] VITALI, V.; BÜNTGEN, U.; BAUHUS, J. (2017): Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. In: Global Change Biology, Jg. 23, H. 12, S. 5108–5119.
[17] VITASSE, Y.; BOTTERO, A.; REBETEZ, M.; CONEDERA, M.; AUGUSTIN, S.; BRANG, P.; TINNER, W. (2019): What is the potential of silver fir to thrive under warmer and drier climate? In: European Journal of Forest Research, Jg. 138, H. 4, S. 547–560.
[18] WOHLGEMUTH, T.; GOSSNER, M. M.; RIGLING, A. (2021): Chancen und Risiken der Douglasie im Waldbau. In: Schweiz Z Forstwesen, Jg. 175, H. 2, S. 62–65.
[19] WOHLGEMUTH, T.; MOSER, B.; PÖTZELSBERGER, E.; RIGLING, A.; GOSSNER, M. M. (2021): Über die Invasivität der Douglasie und ihre Auswirkungen auf Boden und Biodiversität. In: Schweizerische Zeitschrift fur Forstwesen, Jg. 172, H. 2, S. 118–127.
[20] ZWEIFEL, R.; STERCK, F.; BRAUN, S.; BUCHMANN, N.; EUGSTER, W.; GESSLER, A.; HÄNI, M.; PETERS, R. L.; WALTHERT, L.; WILHELM, M.; ZIEMIŃSKA, K.; ETZOLD, S. (2021): Why trees grow at night. In: New Phytologist, Jg. 231, H. 6, S. 2174–2185.