Talkner, Ulrike und Zederer, Dan Paul (AFZ-DerWald 3/2020)

Literaturhinweise aus „Die Phosphorversorgung der Rotbuche “ von Ulrike Talkner, Dan Paul Zederer (AFZ-DerWald 3/2020):

[1] ABER, J.D. (1992): Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology & Evolution, 7, S. 220-224.

[2] BRAUN, S.; THOMAS, V.F.D.; QUIRING, R.; FLÜCKIGER, W. (2010): Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158, S. 2043-2052.

[3] CADE-MENUN, B.J.; BERCH, S.M.; PRESTON, C.M.; LAVKULICH, L.M. (2000): Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types. Canadian Journal of Forest Research, 30, S. 1714-1725.

[4] CADE-MENUN, B.J.; BERCH, S.M.; PRESTON, C.M.; LAVKULICH, L.M. (2000): Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning. Canadian Journal of Forest Research, 30, S. 1726-1741.

[5] CHEN, C.R.; CONDRON, L.M.; DAVIS, M.R.; SHERLOCK, R.R. (2000): Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant and Soil, 220, S. 151-163.

[6] DE VRIES, W.; VAN REINDS, G.J.; KERKVOORDE, M.S.; et al. (2000): Foliar condition. In: De Vries et al. (Hrsg.) Intensive Monitoring of Forest Ecosystems in Europe. Technical Report 2000. S. 85-106. UN/ECE, EC, Forest Intensive Monitoring Coordinate Institute, Heerenveen, The Netherlands.

[7] DUQUESNAY, A.; DUPOUEY, J.L.; CLEMENT, A.; ULRICH, E.; LE TACON, F. (2000): Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in northeastern France. Tree Physiology, 20, S. 13-22.

[8] FÄTH, J.; KOHLPAINTNER, M.; BLUM, U., GÖTTLEIN, A.; MELLERT, K.H. (2019): Assessing phosphorus nutrition of the main European tree species by simple soil extraction methods. Forest Ecology and Management, 432, S. 895-901.

[9] FOX, T.R.; MILLER, B.W.; RUBLIAR, R.; STAPE, J.L.; ALBAUGH, T.J. (2011): Phosphorus nutrition of forest plantations: The role of inorganic and organic phosphorus. In: BÜNEMANN, E.K.; OBERSON, A.; FROSSARD, E. (eds): Phosphorus in Action –  Biological Processes in Soil Phosphorus Cycling. Springer-Verlag, Berlin, Heidelberg, Deutschland, S. 317-338.

[10] GANGKOFNER, R. GÖTTLEIN, A. (2014): Wurzeln fliegen nicht! AFZ-Der Wald, 5, S. 30-34.

[11] GRADOWSKI, T.; THOMAS, S.C. (2006): Phosphorus limitation of sugar maple growth in central Ontario. Forest Ecology and Management, 226, S. 104-109.

[12] GRADOWSKI, T.; THOMAS, S.C. (2008): Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition. Tree Physiology, 28, 173-185.

[13] Gutachterausschuss Forstliche Analytik (ed) (2009): Handbuch Forstliche Analytik,

[14] HARRISON, A.F. (1982): 32P-method to compare rates of mineralization of labile organic phosphorus in woodland soils. Soil Biology and Biochemistry, 14, S. 337-341.

[15] HARRISON, A.F. (1987): Soil organic phosphorus: a review of world literature. Commonwealth Agricultural Bureaux International, Wallingford, UK

[16] HAUENSTEIN, S.; NEIDHARDT, H.; LANG, F.; KRÜGER, J.; HOFMANN, D.; PÜTZ, T.; OELMANN, Y. (2018): Organic layers favor phosphorus storage and uptake by young beech trees (Fagus sylvatica L.) at nutrient poor ecosystems. Plant and Soil, 432, S. 289-301.

[17] JOERGENSEN, R.G.; KÜBLER, H.; MEYER, B.; WOLTERS, V. (1995): Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biology and Fertility of Soils, 19, S. 215-219.

[18] JONARD, M.; AUGUSTO, L.; MOREL, C.; ACHAT, D.L.; SAUR, E. (2009): Forest floor contribution to phosphorus nutrition: experimental data. Annals of Forest Science, 66, S. 510-510.

[19] JØRGENSEN, C.; TURNER, B.L.; REITZEL, K. (2015): Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution 31P NMR spectroscopy. Geoderma, 257/258, S. 22-28.

[20] KARATHANASIS, A.D.; SHUMAKER, P.D. (2009): Organic and inorganic phosphate interactions with soil hydroxy-interlayered minerals. Journal of Soils and Sediments, 9, S. 501-510.

[21] MERINO, A.; REAL, C.; RODRIGUEZ-GUITIAN, M.A. (2008): Nutrient status of managed and natural forest fragments of Fagus sylvatica in southern Europe. Forest Ecology and Management, 255, S. 3691-3699.

[22] Nordwestdeutsche Forstliche Versuchsanstalt (2011), Forschungsvorhaben: Möglichkeiten und Grenzen der Vollbaumnutzung. Göttingen

[23] PAAR, U.; EVERS, J.; DAMMANN, I.; et al. (2016): Waldbodenzustandsbericht für Hessen – Ergebnisse der zweiten Bodenzustandserhebung im Wald (BZE II). Universitätsverlag Göttingen, Göttingen

[24] PARRÉ, D.; BERNIER, B. (1989): Origin of the phosphorus deficiency observed in declining sugar maple stands in the Quebec Appalachians. Canadian Journal of Forest Research, 19, S. 24-34.

[25] PRIETZEL, J.; STETTER, U. (2010): Long-term trends of phosphorus nutrition and topsoil phosphorus stocks in unfertilized and fertilized Scots pine (Pinus sylvestris) stands at two sites in Southern Germany. Forest Ecology and Management, 259, S. 1141-1150.

[26] RENNENBERG, H.; HERSCHBACH, C. (2013): Phosphorus nutrition of woody plants: many questions – few answers. Plant Biology, 15, S. 785-788.

[27] RIEK, W.; TALKNER, U.; DAMMANN, I.; et al (2016): Waldernährung. In: WELLBROCK, N.; BOLTE, A.; FLESSA, H. (eds) Dynamik und räumliche Muster forstlicher Standorte in Deutschland: Ergebnisse der Bodenzustandserhebung im Wald 2006 bis 2008. Johann Heinrich von Thünen-Institut, Braunschweig, S. 245-291.

[28] SAUNDERS, W.; WILLIAMS, E. (1955): Observations on the determination of total organic phosphorus in soils. European Journal of Soil Science, 6, S. 254-267.

[29] SCHEERER, U.; TRUBE, N.; NETZER, RENNENBERG, H.; HERSCHBACH, C. (2019): ATP as Phosphorus and Nitrogen Source for Nutrient Uptake by Fagus sylvatica and Populus x canescens Roots. Frontiers in plant science, 10, Artikel 378

[30] STANFORD, G.; SMITH, S.J. (1972): Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 36, S. 465-472.

[31] SÜCHTING, H. (1939): Untersuchungen über die Ernährungsverhältnisse des Waldes IV. Prüfung ausgewählter Waldböden auf Nährstofflieferung durch Vegetationsversuche mit Lärche, Kiefer und Fichte sowie auf Nährstofflöslichkeit durch chemische Untersuchungsmethoden. Zeitschrift für Pflanzenernährung und Bodenkunde, 13, S. 73-117.

[32] TALKNER, U.; MEIWES, K.J.; POTOČIĆ, N.; SELETKOVIĆ, I.; COOLS, N.; DE VOS, B.; RAUTIO, P. (2015): Phosphorus nutrition of beech (Fagus sylvatica L.) is decreasing in Europe. Annals of Forest Science, 72, S. 919-928.

[33] TRICHET, P.; BAKKER, M.R.; AUGUSTO, L.; ALAZARD, P.; MERZEAU, D.; SAUR, E. (2009): Fifty years of fertilization experiments on Pinus pinaster in Southwest France: the importance of phosphorus as a fertilizer. Forest Science, 55, S. 390-402.

[34] ULRICH, B.; KHANNA, P.K. (1969): Ökologisch bedingte Phosphatumlagerung und Phosphatformenwandel bei der Pedogenese. Flora, Abteilung B, 158, S. 594-602.

[35] WALKER, T.W.; ADAMS, A.F.R. (1958): Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Science, 85, S. 307-318.

[36] WALKER, T.W.; SYERS, J.K. (1976): The fate of phosphorus during pedogenesis. Geoderma, 15, S. 1–19.

[37] WEAND, M.P.; ARTHUR, M.A.; LOVETT, G.M.; SIKORA, F.; WEATHERS, K.C. (2010): The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry, 97, S. 159-181.

[38] WOOD, T.; BORMANN, F.H.; VOIGT, G.K. (1984): Phosphorus cycling in a northern hardwood forest: Biological and chemical control. Science, 223, S. 391-393.

[39] YANAI, R.D. (1992): Phosphorus budget of a 70-year-old northern hardwood forest. Biogeochemistry, 17, S. 1–22.

[40] YANAI, R.D.; STEHMAN, S.V.; ARTHUR, M.A.; PRESCOTT, C.E.; FRIEDLAND, A.J.; SICCAMA, T.G.; BINKLEY, D. (2003): Detecting change in forest floor carbon. Soil Science Society of America Journal, 67, S. 1583-1593.

[41] ZEDERER, D.P.; TALKNER, U. (2018): Organic P in temperate forest mineral soils as affected by humus form and mineralogical characteristics and its relationship to the foliar P content of European beech. Geoderma, 325, S. 162-171.

[42] ZEDERER, D.P., TALKNER, U., SPOHN, M., JOERGENSEN, R.G. (2017): Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and A horizons as affected by tree species. Soil Biology and Biochemistry, 111, S. 166–175.