Šeho, Muhidin, Cremer, Eva, Rau, Bernhard, Kavaliauskas, Darius und Fussi, Barbara (AFZ-DerWald 4/2021)

Literaturhinweise aus „Flatterulme – Herkunftsempfehlungen und Verbesserung der Erntebasis“ von Muhidin Šeho, Eva Cremer, Bernhard Rau, Darius Kavaliauskas und Barbara Fussi (AFZ-DerWald 4/2021):

[1] Aas, G. (2019): Die Flatterulme: Verwandtschaft, Morphologie und Ökologie. LWF Wissen 83, 7-12.

[2] Caudullo, G., Welk, E., San-Miguel-Ayanz, J., 2017. Chorological maps for the main European woody species. Data in Brief 12, 662-666. DOI: 10.1016/j.dib.2017.05.007

[3] Collada, C., Fuentes‐Utrilla, P., Gil, L., & Cervera, M. T. (2004). Characterization of microsatellite loci in Ulmus minor Miller and cross‐amplification in U. glabra Hudson and U. laevis Pall. Molecular Ecology Resources, 4(4), 731-732.

[4] Cremer, E., Luckas, M., Rau, B., Janßen, A. (2019): Aspekte zur Genetik und zum Vermehrungsgut der Flatterulme. LWF Wissen 83, 13-18.

[5] Dumolin, S.; Demesure, B.; Petit, R. J. (1995): Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor. Appl. Genet. 91, S. 1253 – 1256.

[6] Earl, D.A.; Von Holdt, B.M. (2012): STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, S. 359 – 361.

[7] Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, S. 2611 – 2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

[8] Foulley, J. L., & Ollivier, L. (2006). Estimating allelic richness and its diversity. Livestock Science, 101(1-3), 150-158.

[9] Goudet, J. (2001): FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3).

[10] Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular ecology resources, 15(5), 1179-1191.

[11] Mackenthun, G. (2001): Ulmus glabra Huds.emend.Moss, 1762, Enzyklopädie der Holzgewächse, Band 4-III-2.

[12] Mittempherger, L. (1996): Ulmus carpinifolia Gleditsch, 1773, Enzyklopädie der Holzgewächse, Band 4-III-2.

[13] Müller-Kroehling, S. (2003a): Ulmus laevis Pall., Enzyklopädie der Holzgewächse, Band 4-III-2.

[14] Müller-Kroehling, S. (2019): Die Flatterulme in Bayern – ein Überblick über ihr Vorkommen und Erfahrungen zu Eignung und Verwendung. LWF Wissen 83, 19-30.

[15] Müller-Kroehling, S. (2019b): Krankheiten, Schädlinge und Schäden an der Flatterulme – LWF Wissen 83: 65-75.

[16] Nei M (1972) Genetic distance between populations. Am Nat. 106: 283-292

[17] Peakall, R.; Smouse P. E. (2012): GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, S. 2537 – 2539

[18] Petit, R. J.; ElMousadik, A.; Pons, O. (1998): Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12(4), 844 – 855.

[19] Pritchard, J. K.; Stephens, M.; Donnelly, P. (2000): Inference of population structure using multilocus genotype data. Genetics, 155(2), S. 945 – 959.

[20] Venturas, M.; Fuentes-Utrilla, P.; Ennos, R.; Collada, C.; Gil, L. (2013): Human-induced changes on fine-scale genetic structure in Ulmus laevis Pallas wetland forests at its SW distribution limit. Plant Ecology Vol 214, 2, S. 317-327.

[21] Whiteley, R. E., Black‐Samuelsson, S., & Clapham, D. (2003). Development of microsatellite markers for the European white elm (Ulmus laevis Pall.) and cross‐species amplification within the genus Ulmus. Molecular Ecology Resources, 3(4), 598-600.

[22] Zalapa, J. E., Brunet, J., & Guries, R. P. (2008). Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross‐species amplification with Siberian elm (Ulmus pumila L.). Molecular Ecology Resources, 8(1), 109-112.