Newsletter
ABO
Zeitschriften
Service

Krüger, Jaane, Herschbach, Cornelia, Niederberger, Jörg und Lang, Friederike (AFZ-DerWald 3/2020)

Literaturhinweise aus „Wie Buchenwälder auch mit wenig Phosphor auskommen “ von Jaane Krüger, Cornelia Herschbach, Jörg Niederberger, Friederike Lang (AFZ-DerWald 3/2020):

[1] Hinweis BAUHUS, J.; MESSIER, C. (1999): Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Canadian Journal of Forest Research, 29, S. 260–273.

[2] BERGKEMPER, F.; SCHÖLER, A.; ENGEL, M.; LANG, F.; KRÜGER, J.; SCHLOTER, M.; SCHULZ, S. (2016): Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology, 18(6), S. 1988-2000.

[3] BLANES, M.C.; VINEGLA, B.; MERINO, J.; CARREIRA, J.A. (2013): Nutritional status of Abies pinsapo forests along a nitrogen deposition gradient: Do C/N/P stoichiometric shifts modify photosynthetic nutrient use efficiency? Oecologia, 171, S. 797–808.

[4] BRADFORD, M.A.; BERG, B.; MAYNARD, D.S.; WIEDER, W.R.; WOOD, S.A. (2016): Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, S. 229–238.

[5] FACELLI, E.; SMITH, S.E.; FACELLI, J.M.; CHRISTOPHERSEN, H.M.; SMITH, F.A. (2010): Underground friends or enemies: Model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytologist, 185(4), S. 1050-1061.

[6] HAUENSTEIN, S.; NEIDHARDT, H.; LANG, F.; KRÜGER, J.; HOFMANN, D.; PÜTZ, T.; OELMANN, Y. (2018): Organic layers favor phosphorus storage and uptake by young beech trees (Fagus sylvatica L.) at nutrient poor ecosystems. Plant and Soil, 432, S. 289-301.

[7] HELMISAARI, H.-S. (1992): Nutrient retranslocation in three Pinus sylvestris stands. Forest Ecology and Management, 51, S. 347-367.

[8] HERSCHBACH, C.; GESSLER, A.; RENNENBERG, H. (2012): Long-distance transport and plant internal cycling of N- and S-compounds. Progress in Botany, 73, S. 161-188.

[9] LANG, F.; KRÜGER, J.; AMELUNG, W.; WILLBOLD, S.; FROSSARD, E.; BÜNEMANN, E.K.; BAUHUS, J.; NITSCHKE, R.; KANDELER, E.; MARHAN, S.; SCHULZ, S.; BERGKEMPER, F.; SCHLOTER, M.; LUSTER, J.; GUGGISBERG, F.; KAISER, K.; MIKUTTA, R.; GUGGENBERGER, G.; POLLE, A.; PENA, R.; PRIETZEL, J.; RODIONOV, A.; TALKNER, U.; MEESENBURG, H.; VON WILPERT, K.; HÖLSCHER, A.; DIETRICH, H.-P.; CHMARA, I. (2017): Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeogemistry, 136, S. 5-29.

[10] MANGHABATI, H.; WEIS, W., GÖTTLEIN, A. (2019): Changes in phosphorus concentration in needles of adult Norway spruce ‑ nutrient re‑translocation or dilution effect? European Journal of Forest Research, 138, S. 539–546.

[11] NETZER, F.; HERSCHBACH, C.; OIKAWA, A.; OKAZAKI, Y.; DUBBERT, D.; SAITO, K.; RENNENBERG, H. (2018): Phosphorus nutrition of Populus x canescens reflects adaptation to high P-availability in the soil. Tree Physiology, 38, S. 6–24.

[12] NETZER, F.; MUELLER, C.W.; SCHEERER, U.; GRÜNER, J.; KÖGEL-KNABNER, I.; HERSCHBACH, C.; RENNENBERG, H. (2018): Identification of phosphorus compounds contributing to economized phosphorus use during annual growth in F. sylvatica trees on P-impoverished soil. Frontiers in Plant Science, 9, Artikel 723.

[13] NETZER, F.; POZZI, L.; DUBBERT, D.; HERSCHBACH, C. (2019): Improved photosynthesis and growth during N fertilization is accompanied by Pi depletion and P remobilization from older stem tissues. Environmental and Experimental Botany, 162, S. 421-432.

[14] NETZER, F.; SCHMID, C.; HERSCHBACH, C.; RENNENBERG, H. (2017): Phosphorus-nutrition of European beech (Fagus sylvatica L.) during annual growth depends on tree age and P-availability in the soil. Environmental and Experimental Botany, 137, S. 194-207.

[15] SCHUPP, R.; SCHATTEN, T.; WILLENBRINK, J.; RENNENBERG, H. (1992): Long-distance transport of reduced sulfur in spruce (Picea abies L.). Journal of Experimental Botany, 43, S. 1243–1250.

[16] SOHRT, J.; HERSCHBACH, C.; WEILER, M.; (2018): Foliar P- but not N-resorption efficiency depends on the P-concentration and the N:P ratio in trees of temperate forests. Trees, 32, S. 1443–1455.

[17] SPOHN, M.; ZAVIŠIĆ, A.; NASSAL, P.; BERGKEMPER, F.; SCHULZE, S.; MARHAN, S.; SCHLOTER, M.; KANDELER, E.; POLLE, A. (2018): Temporal variations of phosphorus uptake by soil microbial biomass and young beech trees in two forest soils with contrasting phosphorus stocks. Soil Biology and Biochemistry, 117, 191-202.

[18] STIMM, B.; WEISGERBER, H. (2008): Populus x canescens. Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie. Wiley-VCH Verlag GmbH & Co. KGaA.

[19] WATANABE, M.; NETZER, F.; TOGHE, T.; ORF, I.; BROTMAN, Y.; DUBBERT, D.; FERNIE, A.R.; RENNENBERG, H.; HOEFGEN, R.; HERSCHBACH, C. (2018): Metabolome and lipidome profiles of Populus x canescens twig tissues during annual growth show phospholipid-linked storage and mobilisation of C, N and S. Frontiers in Plant Science, 9, Artikel 1292.

[20] WILDHAGEN, H.; DÜRR, J.; EHLTING, B.; RENNENBERG, H. (2010): Seasonal nitrogen cycling in the bark of field-grown grey poplar is correlated with meteorological factors and gene expression of bark storage proteins. Tree Physiology, 30, S. 1096–1110.

[21] WYKA, T. P.; ZYTKOWIAK, R.; OLEKSYN, O. (2016): Seasonal dynamics of nitrogen level and gas exchange in different cohorts of Scots pine needles: a conflict between nitrogen mobilization and photosynthesis? European Journal of Forest Research, 135, S. 483–493.

[22] ZAVIŠIĆ, A.; POLLE, A. (2018): Dynamics of phosphorus nutrition, allocation and growth of young beech (Fagus sylvatica L.) trees in P-rich and P-poor forest soil Tree Physiology, 38, S. 37-51.

von